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PENMAN APPROACH TO EVAPORATION AND EVAPOTRANSPIRATION

1. Penman (1948, 1956) devised a method for estimating evaporation from free-water surfaces which
combined energy-budget and mass-balance methods.  By considering the evaporation from a sunken pan,
he could ignore heat storage changes and conduction through the pan walls because these would be small.

2. Thus he could write:
a. Qn = Qh – Qe (1)



Qn =  net solar radiation

Qh = conduction from atmosphere
Qe = energy used for evaporation   

 in cal/cm2

b. dividing both sides of the equation by ρL

Qn

ρL
 = 

Qh

ρL
 + 

Qe

ρL
(2)

ρ = density of water   (gm/cm3)

L = latent heat of vaporization   (cal/gm)

c. we can rewrite this as
H = K + E (3)

H = 
Qn

ρL
 = net amount of heat from sun, expressed as depth of water it could evaporate

K = 
Qh

ρL
 = net conduction of heat to/from atmosphere, expressed as depth of water it could evaporate

E = evaporation   (cm)

d. the Bowen Ratio is the ratio of Qh to Qe and is given by

R = 
Qh
 Qe

 = γ 
(Ts –  T a)
(es –  e a)

(4)

γ  = psychrometric constant = 0.66 mb/˚C
Ts = temperature at water surface (˚C)
Ta = temperature in atmosphere (˚C)
es = vapor pressure at water surface (mb)
ea = vapor pressure in atmosphere (mb)

e. now  
Qh
Qe

 ≡ KE, hence from (4)

K = ER (5)

f. substituting (5) into (3) we get
H = ER + E = E (R+1) (6)

reorganizing (6)
H
E = R+1 = 1 + γ 

(Ts –  T a)
(es –  e a)

(7)
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g. the basic mass-transfer equation is
E = ƒ(u) (es – ea) (8)
ƒ(u) = a function of windspeed, u

h. Penman proposed that we could write the mass-tranfer equation as
Ea = ƒ(u) (ea' – ed) (9)

Ea = contribution of mass transfer to evaporation    (cm)
ea' = saturation vapor pressure of water surface with temperature T equal to air

temperature   (mb)
ed =  saturation vapor pressure of atmosphere   (mb)

He assumed that the windspeed function ƒ(u) would be the same for both (8) and (9)

i. if we divide Ea by E we get
Ea
E  = 

(ea'  –  e d)
(es –  e a)

  = 1 – 
es –  e a'
es –  e d

(10)

j. the saturation vapor pressures ea' and es increase with increasing temperature

T °C

es

e 'a

sat vapor 
pressure

Ts Ta

The approximate slope at Ta of the saturation vapor pressure vs. temperature curve above is

∆ = 
es  – ea'
Ts –  T a

(11)

k. thus

Ts – Ta = 
es  – ea'

∆ (12)

l. substituting this expression into (7) yields

H
E = 1 + γ 





es –  e a'

∆
es –  e a

 = 1 + 
γ (es –  e a')
∆ (e s –  e a)

(13)

m. but from (10) we get
es –  e a'
es –  e d

 = 1 – 
Ea
E (14)
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n. substituting (14) into (13)

H
E = 1 + 

γ
∆  





(1  –  

Ea
E )

and multiplying both sides of the equation by ∆

H∆
E  = ∆ + γ – 

γEa
E (15)

o. solving (15) for E yields

E = 
H∆ + γEa

∆ + γ (16)

p. dividing numerator and denominator of the right side of (16) by γ yields

E = 

∆
γ  H  +  E a

∆
γ  +1

(17)

q. Penman developed an empirical relation for Ea

Ea (mm/day) = 0.47 (0.5 + 0.01 u2) (ea' - e2) (18)
u2 = wind velocity at 2m above the water surface   (mi/day)
e2 = vapor pressure 2m above the water surface   (mb)

r.
∆
γ   is a function of temperature alone and has been tabulated (e.g., Dunne & Leopold Table 4-6, and

Fig. 4-8)

s. Thus we can compute E without needing the surface temperature Ts, which is hard to measure.

H = 
Qn

ρL
 can be measured directly or estimated from empirical equations

t. In a real pan, there is significant transfer by conduction and radiation through pan walls.  Kohler et. al.
(1955) modified the Penman equation to account for this and produced graphs to calculate evaporation
for both pans and lakes (Dunne & Leopold Fig. 4-9).

3. Penman adapted his equation to yield estimates of potential evapotranspiration by assuming:
1) for periods of a day or longer, changes of energy stored in plants and soil can be neglected
2) advected energy input is small and may be neglected

a. with these simplifications, we can write
Qn = Qh + Qet (19)



Qn =  net solar radiation

Qh = energy transferred from vegetation to air as sensible heat (conduction)
Qe = energy used for evapotranspiration   

 cal/cm2
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b. as before, we apply the Bowen Ratio, R

R = 
Qh
Qet

 = γ 
(Ts –  T a)
(es –  e a)

(20)

Ts = temperature of leaves and soil (˚C)
Ta = temperature of air (˚C)
es = vapor pressure of leaves and soil (mb)
ea = vapor pressure of air (mb)

c. solving (20) for Qh and substituting into (19)
Qn = Qet + RQet = Qet (1 – R) (21)

d. solving (21) for Qet

Qet =  
Qn

1+R = 
Qn

1  +  γ 
(Ts –  T a)
(es –  e a)

(22)

e. we divide both sides of (22) by ρL (compare eq. 2) to get the evapotranspiration,ET

ET = 
1

ρL
 







Qn

1  +  γ 
(Ts –  T a)
(es –  e a)

(23)

f. It is nearly impossible to determine es and Ts, however, because of different amounts of shade and
heat flux over short distances.  Instead we can try:

ET = 
1

ρL
 







Qn

1  +  γ 
(T2 –  T 1)
(e2 –  e 1)

(24)

where the subscripts 1 and 2 refer to the quantities measured at two different elevations over the
vegetated surface (e.g., at 1 and 2 m).  The quantities are still difficult to measure, however.

g. If we take an area surrounded by moist, uniform terrain, then the lower layers of the atmosphere will
be in approximate thermal equilibrium with the surface, and Qh ≈ 0.  In this case, Qn = Qet.




